

μ SR Study of Hole-Doped Organic Metals κ -(ET)₄Hg_{3- δ}X₈; X = Br, Cl "Superconductivity Nearby Quantum Spin Liquid States" **D. P. Sari^{1,2}**, Y. Cai^{3,4}, U. Widyaiswari^{5,2}, A. E. Putri^{2,6}, E. Yamada⁷, Y. Someya¹, A. Koda⁸, Y. Ishii¹, F. L. Pratt⁹, K. M. Kojima^{3,4}, I. Watanabe², Y. Ishii¹, H. Taniguchi⁷

¹College of Engineering, Shibaura Institute of Technology, Saitama, Japan; ²Meson Science Laboratory, RIKEN Nishina Center, Saitama, Japan; ³Center for Molecular and Materials Science, TRIUMF, Vancouver, Canada; ⁴Stewart Blusson Quantum Matter Institute, University British Columbia, Canada; ⁵Department of Physics, Universitas Padjajaran, Indonesia; ⁶Department of Physics, Universitas Indonesia, Indonesia; ⁷Department of Physics, Saitama University, Saitama, Japan; ⁸IMSS- KEK, Japan; ⁹ISIS Neutron and Muon Source, United Kingdom.

ISIS Neutron and Muon Source

PARC

Strange Metal is abundant in the strongly correlated electron systems, as the normal state of the optimum $T_{\rm c}$ regime of the superconducting, e.g., cuprates and organics [1].

Non-Fermi Liquidity of the incoherent metal is phenomenologically characterized by:

- frequency dependence of electronic scattering rate: $Im \Sigma(\omega) \sim \sqrt{\omega} [2]$
- temp. dependence of resistivity: $\rho \sim T$ [3; Ref. therein]

300		Τ*	
200	_ Τ _Ν	Strange metal Pseudogap T _{SC, onset} T _{C, onset}	

id Candidate

 κ -(ET)₄Hg_{3- δ}Br₈ (δ =0.11), κ -HgBr Superconductor; $T_{\rm C} \sim 4.3$ K Pressure Induced Non-Fermi Liquid - Fermi Liquid Crossover [12]

 κ -(ET)₄Hg_{3-δ}Cl₈ (δ=0.22), κ -HgCl Metal – Insulator; $T_{\rm MI} \sim 20 \, {\rm K}$ Mott Insulator, Pressure Induced Superconductor [12]

Previous studies: a. ĸ-HgBr is a doped spin liquid candidate due to triangular

collision time in resistivity ~ $\hbar/(k_B T)$ [3] current flow without quasiparticle [3] no long-range order, towards QCP [2] Sachdev-Ye-Kitaev (SYK) model [4–6] describes strange metal (0+1 dimension) dual to black hole in the Anti-de-Sitter (0+2 dimension) AdS_2 horizon \rightarrow Holography [7] Tsuji-Warner Phase diagram: 4-point out-oftime-order-correlator of Multi-orbital Hubbard model. Strongly fluctuating spins in the spin freezing crossover has the SYK strange metal characteristic [8]. Kim-group showed phase diagram for the ¹/₂-filled system [].

Schmalian-group demonstrated that the Yukawa-SYK superconductor is characterized by coherent quasiparticle excitations and higher-order bound states thereof [9]. Furthermore, it is holographic and quantum critical *conventional* Eliashberg

£ 0.3-

Order parameter

atmosphere

Results and Discussion

Superconductivity: 1. Temperature independence of

Questions: Can we experimentally observe and characterize the order parameter of a holographic superconductor in actual Non-**Fermi Liquid material?? We focus on an organic strange metals** which undergoes superconducting or Mott insulating.

↑ Pair braking source

··· SYK interaction

boundary

Aligned

ĸ-HgBr

crystals,

180 mg

a = 37.524(5) Å

b = 8.7491(11) Å

c = 11.1200(15) Å

Experimental Details

Muon Spin Rotation and Relaxation (μ^+SR)

H = 500 Oe T = 6 K

- $ZF \mu^+SR$ from around 10 K crossing superconducting state \rightarrow preserved timereversal symmetry of incoherent metal [Ref. 23] Strong coupling superconductor with gap ratio 5.0 ±0.7. Measurement at 1000 Oe gave gap ratio 7.0 \pm 1.2 \rightarrow very similar to SYK-NFL! Well fitted by *d*-wave symmetry. The $T_c = 4.3$ K but has 4. smallest superfluid density. $\boldsymbol{\prec}$ 0.20 **κ-(ET)**₄Hg_{2.78}Cl₈ 0.15 • D1@J-PARC ■ ARGUS@ISIS ▲ M15@TRIUMF Relax 0.10 AF interaction $J = 131 \pm 17$ K fitting range (110 – 270 K) 0.05 0.01 *T* (K) Figure 3. Temperature dependence of ZF- μ^+ SR relaxation rate
 - Spin Liquidity: There is no long-range magnetic order down to 25 mK. Instead, there is a broad peak around 0.1 K \rightarrow the spin seems to be freezing. There is a plateau region 2. separating M-I transition \rightarrow QCP? 3. In the metallic state (high-T region) the Antiferromagnetic exchange interaction are confirmed. Cf [Ref. 24] 4. From LF- μ^+ SR the spin is more diffused and dynamics at high-Tregion \rightarrow Quantum entanglement nearby QCP?

- Zero field (ZF) μ^+ SR using pulsed muon at ISIS, UK
- and JPARC, Japan

0.3 K – 300 K, ³He cryostat and ⁴He gas flow London penetration depth and Pairing symmetry Determination

- Transverse field (TF) μ^+ SR using DC muon at TRIUMF, Canada
- 0.025 K 6 K, ⁴He+³He Dilution Refrigerator

Mott Insulating K-HgCl muon Relaxation rate Measurements and Spin

Dynamics

Measurements

- ZF and Longitudinal Field (LF) μ^+ SR using DC muon at TRIUMF, Canada, pulsed muon at ISIS, UK and JPARC, Japan, respectively. $0.025 \text{ K} - 300 \text{ K}, {}^{4}\text{He} + {}^{3}\text{He}$ Dilution
- Aligned ĸ-HgCl Refrigerator, ³He cryostat and ⁴He gas flow crystals, 100 mg

References

[1] B. Keimer et al., Nature 518, 179-186 (2015); [2] O. Parcollet and A. Georges, PRB 59, 8 (1998); [G. Grissonnache, et al., Nature 595, 667-672 (2021); [4] S. Sachdev and J. Ye, PRL 70, 3339 (1993); [5] A. Kitaev, J. Suh, JHEP 183 (2018); J. Maldacena and D. Standford, PRD 94, 106002 (2016); [7] S. Hartnoll, P. Herzog, and G. T. Horowitz, PRL 101, 031601 (2008); S. Sachdev, PRX (2015);

ET dimer S = 1/2

[8] N. Tsuji and P. Warner, PRB 99, 115132 (2019); [9] I. Esterlis and J. Schmalian, PRB 100, 115132 (2019); [10] G-A Inkof, K. Schalm, J. Schmalian, npj Quantum Materials 7:56 (2022); [11] C. D. Hebert, P. Semon, A.-M. Tremblay, PRB 92, 195112 (2015); [12] H. Taniguchi et al., JPSJ 76, 113709 (2007), H. Taniguchi, et al., JPSJ 76 Suppl. A, pp. 168-171; [13] H. Oike, et al., Nat. Commun. 8, 756 (2017); [14] K. Satoh, et. al., Physica B 404, 597 (2009); [15] Y. Eto, et al., PRB 81, 212503 (2010); [16] A. Naito, et. al., PRB 71, 054514 (2005); [17] D. P. Sari, et al., PRB 104, 224506(2021); [18] A. D. Hillier, Nat. Rev. Method Primer, 2, 4, (2022); [19] Y. Kurosaki, et al., Physica B, 404, 31 (2009); [20] F. L. Pratt, et al., Phys: Cof. Ser. 2462 012038 (2023); [21] F. L. Pratt et al., PRB 10, L060401 (2022); [22] S. Bandyopadhyay, et al., Quantum, 7, 1022 (2023); [23] D. P. Sari et al., J. Phys.: Conf. Ser. 2462 012061 (2023); [24] D. P. Sari, et al., in Solid State Phenomena, 345, 47 (2023) Reference therein.

Figure 4. LF- μ^+ SR relaxation rate at several temperatures in k-HgCl

Conclusion: k-HgBr and k-HgCl seems to be a good starting candidates for studying holographic superconductor and SYK model in laboratory

3b

100